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DeepFunc: A Deep Learning Framework for Accurate
Prediction of Protein Functions from Protein Sequences
and Interactions
Fuhao Zhang, Hong Song, Min Zeng, Yaohang Li, Lukasz Kurgan, and Min Li*

Annotation of protein functions plays an important role in understanding life
at the molecular level. High-throughput sequencing produces massive
numbers of raw proteins sequences and only about 1% of them have been
manually annotated with functions. Experimental annotations of functions are
expensive, time-consuming and do not keep up with the rapid growth of the
sequence numbers. This motivates the development of computational
approaches that predict protein functions. A novel deep learning framework,
DeepFunc, is proposed which accurately predicts protein functions from
protein sequence- and network-derived information. More precisely,
DeepFunc uses a long and sparse binary vector to encode information
concerning domains, families, and motifs collected from the InterPro tool that
is associated with the input protein sequence. This vector is processed with
two neural layers to obtain a low-dimensional vector which is combined with
topological information extracted from protein–protein interactions (PPIs) and
functional linkages. The combined information is processed by a deep neural
network that predicts protein functions. DeepFunc is empirically and
comparatively tested on a benchmark testing dataset and the Critical
Assessment of protein Function Annotation algorithms (CAFA) 3 dataset. The
experimental results demonstrate that DeepFunc outperforms current
methods on the testing dataset and that it secures the highest Fmax = 0.54
and AUC = 0.94 on the CAFA3 dataset.

1. Introduction

Proteins perform many cellular functions and play indispens-
able role in a large variety of biological processes.[1] Protein
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data is being produced at a fast and
even increasing pace by high-throughput
sequencing techniques but their func-
tional understanding is lagging.[2,3] Only
about 1% of proteins has been probed
experimentally and was manually anno-
tated in the UniProt database.[4] Pro-
tein functions can be elucidated via in
vitro and in vivo experiments.[5] However,
these experimental methods are expen-
sive, time-consuming, and do not scale
with the growth of the number of protein
data. This motivates the need to develop
runtime-efficient and accurate computa-
tional methods that predict protein func-
tions directly from protein data.
Many computational methods have

been proposed to predict protein func-
tions. Generally, researchers develop a
pipeline to predict functions of proteins
by using protein sequences according
to the following steps: select useful fea-
tures to encode input proteins, construct
training and testing datasets, select an
appropriate algorithm, and evaluate the
performance. One of the most popular
computational methods is BLAST that
uses functions of similar sequences to

functionally annotate the input sequence. However, this ap-
proach has two limitations: 1) similar and functionally anno-
tated proteins cannot be found for many input sequences; and 2)
some proteins may have similar functions while having low se-
quence similarity. Thus, the results obtained by these homology-
based approaches are not always accurate.[6] One way to over-
come the challenge is to extract useful information from con-
served subregions or residues in the input protein chain. For
example, Das and his collaborators proposed a domain-based
method to predict protein functions.[7] Wang and his collab-
orators proposed a motif-based protein function classifier.[8]

Moreover, some methods predict protein functions utilizing
residue-level information.[9] This information may include sec-
ondary structures extracted from input protein sequences,[10] or
secondary structure, disordered regions, signal peptides, and
motifs like in the case of the FFPred3 method.[11] Finally, sev-
eral approaches rely on the PPI-derived information to accu-
rately predict protein functions.[12–17] The crucial idea behind
these methods is that proteins which share similar topological
features in the PPI networks may share similar functions.[18]
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Moreover, some protein function predictors utilize other types of
data, such as genetic interactions,[5] genomic context,[19] protein
structure,[20–23] and gene expression.[24,25] We focus on two classes
of current predictors: sequence-basedmethods that cover the use
of domains, motifs and residue-level information,[26,27] and PPI-
based methods that rely on information extracted from these
networks.[17,28,29] These two classes of methods utilize some-
how complementary information. While topological information
will be used to characterize protein functions based on protein–
protein interactions, sequence-based methods could be effective
in identifying proteins that incorporate signal peptides or trans-
membrane proteins,[30] which are not necessarily easy to predict
using PPIs.
This article explores the use of deep learning to efficiently pro-

cess and combine the sequence-based andPPI-based approaches.
While deep learning was shown to improve predictive perfor-
mance in several related prediction problems,[31–37] it was used
only once in the context of combining these two types of infor-
mation to predict protein functions in the DeepGOmodel.[28] We
design and comparatively test a novel deep learning model called
DeepFunc. Our sequence-based approach relies on the genera-
tion of a high-dimensional vector of information (35 000 dimen-
sions) that describes domains, families, and motifs which are ex-
tracted by InterPro.[38] These data must be reduced before they
can be combined with a relatively low-dimensional data extracted
from the PPI network. We combine functional linkages from
EggNOG[39] and interactions from STRING[40] to construct the
PPI network. We use the Deepwalk algorithm[41] to extract a com-
prehensive collection of topological features that describe the un-
derlying PPI network. The innovative aspect of DeepFunc is the
use of the deep network for two distinct purposes: to convert the
high-dimensional sequence-based approach into an information-
rich, low-dimensional format, and to effectively combine these
data with the topological information obtained from the PPI
network. Consequently, comparative empirical analysis on mul-
tiple benchmark datasets reveals that DeepFunc outperforms
DeepGO, as well as a few other representative function predic-
tors, such as FFPred3 and GOPDR. The results demonstrate
that the improved predictive performance is directly attributed
to the extraction of high-quality sequence-based and PPI-based
features. Moreover, DeepFunc obtains comparable results when
testing on particularly challenging low similarity proteins.

2. Experimental Section

2.1. Datasets and Assessment Metrics

The data introduced in the DeepGO article[28] was used that
is available at https://github.com/bio-ontology-research-group/
deepgo. This benchmark dataset contained 60 710 proteins anno-
tated with functions based on experimental evidence codes that
were filtered to exclude long sequences and sequences that con-
tain ambiguous amino acid codes (B, O, J, U, X, and Z). This
dataset included 31 530 proteins with annotated molecular func-
tions (MFs) and focused on the top 589 MF terms that were as-
signed to at least 50 proteins. The dataset was divided into a
training dataset (80% of randomly selected proteins) and a test-
ing dataset (the remaining 20% of proteins). The training dataset

Significance Statement

Function annotationof proteins is crucial inmolecular biology.
However, existing computationalmethodsusually focuson
usingone typeof protein data (either protein sequences or PPI
network) to predict protein functions,whichmay cause the loss
of certain protein features. In this study, a powerful deep learn-
ing framework (DeepFunc) for predictingprotein functions
is proposed. By using theDeepwalk algorithm, InterProscan
tool, anddeep learning architecture,DeepFunc extracts high-
quality features of protein sequences andPPI networks.Deep-
Func combines these features to predict protein functions and
achieves better performance thanBLASTandDeepGO.

contained 25 224 protein sequences and the testing dataset con-
tained 6306 protein sequences. Only the training dataset was
used to parametrizeDeepFunc, while the testing dataset was used
to evaluate the already parametrized model. A subset of 20% of
the training proteins was selected to create validation dataset that
was used to empirically select the best parameters for the models
trained using the remaining 80% of the training dataset, that is,
parameters were optimized to maximize predictive performance
on the validation dataset. Moreover, an independent (blind) em-
pirical assessment was provided on the dataset from CAFA3 and
the dataset and results from selected other predictors were down-
loaded from https://github.com/bio-ontology-research-group/
deepgo.
Predictive performance was evaluated with three commonly

used measures that included, average precision (AvgPr), average
recall (AvgRc), andmaximumF-measure (Fmax) that were used in
the CAFA challenge.[42] Moreover, two additional measures were
used, Area Under Curve (AUC) and Mathews Correlation Coeffi-
cient (MCC), which were utilized in recent related studies.[28,43–46]

2.2. Architecture of DeepFunc

The architecture of the DeepFunc framework for the prediction
of protein functions is shown in Figure 1. The InterPro outputs
were processed using two fully connected neural layers to extract
small and dense vector of sequence-based features. Concurrently,
the Deepwalk algorithm was utilized to capture topological fea-
tures of the PPI network in the vicinity of the input protein se-
quences. The feature vectors produced from the PPI network and
from the sequence were concatenated and fed into a fully con-
nected deep network that predicts protein functions.

2.2.1. Extraction of the Sequence-Derived Features

A variety of features computed from sequences-based features
were used in the prediction of protein functions. They include
sequence similarity,[9,47] k-mer frequencies,[48] and presence of
certain subsequences.[49] Our approach was to encode the raw
protein sequence by the vector of protein families, domains,
and motifs (subsequences) that were obtained by InterPro
resource. InterPro releases 70.0 contained 35 020 entries and
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Figure 1. An overview of our proposed deep learning framework for identifying protein functions.

combined diverse information coming from 14 databases, such
as CCD,[50] Pfam,[51] CATH-Gene3D,[52] and SUPERFAMILY.[53] It
provided InterProScan package (http://www.ebi.ac.uk/interpro/
download.htm) that scanned protein sequences and annotated
information about the input sequences with 2865 superfamilies,
21 695 families, 9268 domains, 280 repeats, and 912 sites. Then,
InterPro was used to encode the families, domains, and motifs
information of input protein sequence into a 35 020-dimensional
binary vector. In this vector, 1 means that this sequence was
assigned to a given superfamily/family/domain or had a given
repeat or site, otherwise, the value of 0 was assigned. This
sparse and high-dimensional vector (all but a handful of the
thousands of values equal 0) was not suitable as an input for
the deep network. Thus, two fully connected neural layers were

used to convert this vector into a substantially shorter and dense
feature vector that could be effectively used to predict protein
functions. The 35 020-dimensional binary input vector was
processed by two fully connected layers of 1024 neurons that
output 512-dimensional vector. The two layers were defined
using the ReLU activation functions

al = σ (wal − 1 + b) (1)

where al is the output of given fully connected layer, al − 1 is the
corresponding input, σ is a nonlinear activation function, w is a
weight matrix, and b is the bias term. The values of w and b were
optimized using the training dataset and the back-propagation
algorithm.
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2.2.2. Extraction of the PPI Network–Derived Features

The PPI network was constructed with the help of the STRING
and EggNOG resources. STRING data was downloaded on June
7, 2018 from https://string-db.orgm and the EggNOG data on
June 10, 2018 from http://eggnogdb.embl.de/#/app/downloads.
The network was based on the functionally annotated proteins
collected from SwissProt on June 7, 2018. The SwissProt iden-
tifiers were mapped into the STRING records and a subset of
these proteins was selected that have interaction confidence score
of at least 300. It was worthy noting that there were some pro-
teins without interaction information in the STRING database.
Thus, functional linkages from EggNOG database were used as
missing interaction information to construct the PPI network.
Specifically, if two nodes both had interaction information and
functional linkage, the interaction information was used as the
edge between them. In terms of two nodes without interaction
information, functional linkage was regarded as the interaction
information. By using this strategy, coverage of PPI interactions
was improved by adding functional linkages from the EggNOG
database. The resulting network contained 354 687 nodes and
54 552 077 edges.
Networks had been widely used to model the structure of vari-

ous biological systems and played an important role in biological
prediction problems.[54–56] Thus, it was aimed to extract PPI net-
work characteristics that were useful for the prediction of protein
functions. Deep learning techniques were recently used to ana-
lyze several network-based datasets.[57–59] A few new representa-
tions of such datasets had been proposed by drawing from the
natural language processing area, such as node2vec,[60] LINE,[61]

and Deepwalk techniques.[41] The Deepwalk method was ap-
plied motivated by a couple of recent studies that used similar
random walk approaches to capture topological features of PPI
networks.[13,62] Deepwalk used each vertex (protein) as the start-
ing point to traverse nearby vertices by using a random walk al-
gorithm. It applied the Skip-Gram model[63] to characterize the
surrounding vertices for each given central vertex by maximiz-
ing the co-occurrence likelihood between the central vertex and
its neighbors. This model generated a dense, low-dimensional
vector for each vertex in the PPI network that represented topo-
logical features of the underlying PPI network. In order to cover
all neighbors of a central vertex as many as possible, a sampling
method was used. The formula is as follows

(
1− 1

p

)k

≤ α (2)

where p is the ratio of edges to vertices. After k iterations start-
ing from a central vertex to perform random walks, the proba-
bility that one neighbor of the central vertex was not picked at
least once is small than α. In this study, our PPI network had
354 687 vertices and 54 552 077 edges; α = 0.1 was set, and the
approximate value of walk number was 300. Using the training
dataset, the Deepwalk model was iteratively computed that was
parametrized with walk-length = 20, window-size = 10, and the
output vector size = 256. During training and testing process,
a zero vector was assigned to those proteins without topological
features of PPI network.

Table 1. The predictive performance of DeepFunc and other two methods
on the testing dataset.

Method Fmax AvgPr AvgRc MCC AUC

BLAST 0.37 0.37 0.38 - -

DeepGO 0.47 0.58 0.40 0.44 0.93

DeepFunc 0.56 0.67 0.48 0.52 0.94

MCC and AUC cannot be computed for the binary predictions generated with BLAST.
Best results for each quality measure are highlighted in bold.

2.2.3. Design of the Deep Neural Network

The deep neural network was implemented with PyTorch,[64] a
popular deep learning framework that was developed by Face-
book. The topology of the network (including the two neural
layers used to produce the sequence-derived features) was op-
timized to maximize predictive performance on the validation
dataset. The 512-dimensional vector of sequence-derived infor-
mation was concatenated with the 256-dimensional vector of the
PPI-derived information and the resulting 768 inputs were fed
into the first fully connected hidden layer with 1024 nodes that
used the Rectified Linear Unit (ReLU) activation function. The
second hidden layer is also fully connected and includes 1024
neurons that utilized sigmoid function to map the outputs to the
range that could be interpreted as propensity for protein func-
tions. The Adam optimizer was used with batch size = 128 and
initial learning rate = 0.002 to train the deep network.

3. Results

3.1. Comparison on the Testing Dataset

We comparatively assess DeepFunc on the testing dataset against
BLAST and themost related othermethod, DeepGO, which simi-
larly relies on deep learning. While both DeepFunc and DeepGO
provide numeric propensity scores (likelihood that a given pro-
tein has a given function), BLAST’s predictions that are based
on the function annotations of the most similar protein from the
training dataset are binary (a given protein either has or has not
a given function). The latter means that we cannot quantify MCC
and AUC value for BLAST’s predictions. Table 1 shows that the
predictive performance of DeepFunc is consistently better (over
all five quality measures) than the predictive performance of the
other two predictors. Specifically, DeepFunc secures Fmax = 0.56,
AvgPr = 0.67, and AvgRc = 0.48, which are better by (0.56 –
0.37)/0.37= 51.3, 81.0, and 26.3% than the BLAST’s predictions,
respectively. Similarly, the relative improvements over DeepGO
equal 19.1, 15.5, 20.0%, respectively. Moreover, the DeepFunc’s
MCC and AUC values are also substantially higher than the cor-
responding DeepGO’s values (0.52 vs 0.44 and 0.94 vs 0.93).
The testing dataset includes highly similar (nearly identical)

proteins when compared to the proteins in the training dataset,
which are rather trivial to predict given that they would share the
same functions. In order to investigate whether DeepFunc can
perform well on the low similar protein sequences, raw testing
set removes all protein sequences that are highly similar to the
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Table 2. The predictive performance of DeepFunc on the testing dataset
and low similarity testing dataset that only includes sequences that share
low (<50%) similarity to the training dataset.

Dataset Fmax AvgPr AvgRc MCC AUC

Raw testing dataset 0.56 0.67 0.48 0.52 0.94

Low similarity testing dataset 0.55 0.64 0.48 0.51 0.93

Best results for each quality measure are highlighted in bold.

Table 3. The predictive performance of DeepFunc, DeepGO, FFPred3, and
GoFDR on the CAFA3 dataset.

Method Fmax AvgPr AvgRc MCC AUC

FFPred3 0.38 0.35 0.40 0.29 0.86

GoFDR 0.52 0.89 0.36 0.60 0.84

DeepGO 0.47 0.61 0.39 0.37 0.90

DeepFunc 0.54 0.62 0.48 0.44 0.94

Best results for each quality measure are highlighted in bold.

sequences in the training dataset. Specifically, we create a low
similarity subset from the raw testing dataset by using BLAST
which calculates the pair-wise sequence identity of all proteins
with experimental annotations. A sequence having less a certain
sequence identity value is selected from the raw testing dataset
and placed in the low similarity subset as the low similarity test-
ing set. The selection of this certain value draws on prior stud-
ies that observe that functional similarity is characteristic for
proteins that share >50% similarity,[65–67] and thus use of lower
similarity sequences would rely on nontrivial relationships. The
raw testing dataset contains 6306 protein sequences. After pre-
processing, the low similarity testing set contains 1835 protein
sequences. Table 2 summarizes results for these challenging test-
ing proteins. The results show that the performance of evaluating
new testing set is slightly lower than the performance of evalu-
ating raw testing set. When evaluating new testing set, the Fmax,
AvgPr, MCC, and AUC drops from 0.56, 0.67, 0.52, and 0.94 to
0.55, 0.64, 0.51, and 0.93, respectively. In conclusion, DeepFunc
obtains satisfactory results no matter when evaluating raw test-
ing set or low similarity testing set.

3.2. Comparison on the CAFA3 Dataset

We empirically compare DeepFunc on the CAFA3 dataset with
DeepGO and two recently published and relatively highly cited
methods: FFPred3 (published in August 2016; 19 citations in
Google Scholar as of January 2019)[5] and GoFDR (published
in January 2016; 18 citations in Google Scholar as of Jan-
uary 2019).[9] We use public source code of GoFDR to run
its predictions. FFPred3’s prediction was downloaded from
http://bioinfadmin.cs.ucl.ac.uk/downloads/ffpred/cafa3/. None
of the fourmethods (DeepFunc, DeepGO, FFPred3, and GoFDR)
has used protein annotations from the CAFA3 dataset during
their training.
Table 3 compares predictive performance on the CAFA3

dataset. DeepFunc secures the best values of Fmax, AvgRc, and

Table 4. The predictive performance of DeepFunc and comparison to
DeepGO Seq (DeepGO that applies only the sequence-derived inputs),
DeepGO, DeepFunc Seq (DeepFunc that applies only the sequence-
derived inputs), and DeepFunc PPI (DeepFunc that applies only the PPI
network–derived inputs) on the testing dataset.

Method Fmax AvgPr AvgRc MCC AUC

DeepGO Seq 0.36 0.45 0.30 0.33 0.87

DeepGO 0.47 0.58 0.40 0.44 0.93

DeepFunc Seq 0.54 0.67 0.46 0.50 0.91

DeepFunc PPI 0.48 0.58 0.42 0.46 0.93

DeepFunc 0.56 0.67 0.48 0.52 0.94

Best results for each quality measure are highlighted in bold.

AUC. DeepFunc obtains Fmax = 0.54 and AUC = 0.94 outper-
forming FFPred3 (0.38 and 0.86, respectively), GoFDR (0.52 and
0.84, respectively), and DeepGO (0.47 and 0.90, respectively).
The corresponding relative improvements in Fmax range between
(0.54 – 0.52) / 0.52= 3.8% compared to GoFDR and 42.1% when
compared to FFPred3, while the increases in AUC range between
4.4% when contrasted with DeepGO and 11.9% when compared
to GoFDR. Moreover, we observe that DeepFunc’s performance
is better than the performance of FFPred3 and DeepGO in all
assessment metrics. Comparison with GoFDR reveals a trade-
off in the average precision (0.89 for GoFDR vs 0.62 for Deep-
Func) and the average recall (0.36 for GoFDR vs 0.48 for Deep-
Func). However, an arguablymost informative AUC value, which
is independent of the somehow arbitrary binarization threshold,
reveals a large advantage for DeepFunc (0.94 vs 0.84). Overall,
we conclude that DeepFunc outperforms the other three recently
published predictors.

3.3. Ablation Study

We also dissect the DeepFunc model to investigate impact of
the two types of its inputs: sequence derived and PPI net-
work derived. We empirically compare predictions of the corre-
sponding three version of DeepFunc: complete DeepFuncmodel,
DeepFunc Seq that applies only the sequence-derived inputs,
and DeepFunc PPI that uses only the PPI network–derived in-
puts. We contrast these predictions with the outputs produced
by DeepGO and DeepGO Seq that applies only the sequence-
derived inputs (we were not able to implement the DeepGO PPI
version). The results produced by these five models on the test-
ing dataset are compared in Table 4. We observe that DeepFunc
outperforms all other considered models on all five metrics.
The comparison of the three versions of DeepFunc reveals that

inclusion of each of the two inputs improves the resulting pre-
dictions. The removal of the sequence-derived inputs results in
drop in AUC from 0.94 to 0.93 and in Fmax from 0.56 to 0.48. The
exclusion of the PPI network–derived features also has a strong
negative impact. It lowers AUC from 0.94 to 0.91 and Fmax from
0.56 to 0.54. The fact that combining the two input types together
improves predictive performance suggests that these two inputs
are complementary.
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While Section 3.1 already compares DeepFunc and DeepGO,
here we focus on the side-by-side comparison of their versions
that utilize only the sequence-derived inputs. DeepGO primarily
relies on a simple 3-mer-based representation of the input se-
quence while DeepFunc uses likely more informative features
that encode information about domains, families, and motifs as-
sociated with the input protein chain. The higher quality of the
DeepFunc’s sequence-derived inputs results in a substantially
higher predictive performance. The improvements are present
across all fivemetrics, with AUC= 0.91 for DeepFunc Seq versus
0.87 for DeepGO Seq, Fmax = 0.54 versus 0.36 and AUC = 0.50
versus 0.33. These results indicate that the domain/family/motif
information is effective for the prediction of protein func-
tions. We also compare DeepFunc PPI with DeepGO. Table 4
shows that DeepFunc PPI has a slight advantage although unlike
DeepGO it does not use the sequence-derived input. The corre-
sponding Fmax and MCC for DeepFunc PPI equal 0.48 and 0.46
versus 0.47 and 0.44 for DeepGO, respectively. This suggests that
the PPI network and its encoding utilized by DeepFunc are better
than the network used in DeepGO. In summary, DeepFunc effec-
tively combines protein sequences and PPI networks, and extract
higher-quality features for protein function prediction, which is
the main factor behind the improvements offered by DeepFunc
over the other deep learning-based predictor, DeepGO.

4. Discussion

We design, test, and comparatively assess a deep learning frame-
work for protein function prediction, DeepFunc. Our method
uses deep neural network to make accurate predictions from
the protein sequence- and network-derived information. The
DeepFunc combines topological features of PPI network and
subsequence-based features concerning motifs, domains, and
family assignments associated with the protein sequences. The
topological features and protein sequence used inDeepFunc have
been previously used individually or in combination with other
features for the protein function prediction. They do not bias our
model toward theGO terms anymore than in the other published
methods. The main contribution in our article is related to the
use of the deep learning techniques to effectively represent the
high-dimensional vector of the InterProScan-derived informa-
tion and to combine the topological features extracted from the
“enhanced” PPI network with this reduced InterProScan-derived
information. These advances are responsible for the favorable
predictive performance of DeepFunc.
Empirical tests show that DeepFunc secures comparable

results on the two benchmark datasets: AUC = 0.94 and Fmax =
0.56 on the testing dataset and AUC = 0.94 and Fmax = 0.54
on the CAFA3 dataset. These tests demonstrate that DeepFunc
outperforms the other deep learning-based solution, DeepGO,
and predictions that rely on the sequence alignment with BLAST,
including a challenging scenario where the test proteins share
relatively low similarity to the training proteins. Comparison
with three recently published methods (Deep GO, FFPred3, and
GoFDR) on CAFA3 dataset reveals that DeepFunc obtains the
highest values of Fmax and AUC. The improvements over the
second best result on this dataset are 0.94 versus 0.90 in AUC

and 0.54 versus 0.52 in Fmax. Overall, these empirical results
suggest that DeepFunc provides the most accurate predictions.
The ablation study shows that extracting higher-quality fea-

tures from protein sequences and PPI network that are uti-
lized by DeepFunc contribute to its high-predictive performance.
Moreover, detailed comparison of the two deep learning-based
tools suggests that the sequence-derived inputs and PPI network
used by DeepFunc are superior to the same type of inputs used
by the DeepGO predictor.
As part of future work, we will consider inclusion of addi-

tional sources of sequence-derived information to study whether
this can lead to further improvements in the predictive perfor-
mance. Example of potentially useful inputs that were success-
fully used by some of the older predictors include co-expression
data,[68] phylogenetic information,[69] and quantitative biophysical
properties.[70]
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